organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bi-1,1'-cycloheptane-1,1'-diol

Richard Betz and Peter Klüfers*

Ludwig-Maximilians-Universität, Department Chemie und Biochemie, Butenandtstrasse 5–13, 81377 München, Germany Correspondence e-mail: kluef@cup.uni-muenchen.de

Received 12 November 2007; accepted 13 November 2007

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.002 Å; R factor = 0.052; wR factor = 0.127; data-to-parameter ratio = 17.7.

The title compound, $C_{14}H_{26}O_2$, is a vicinal diol bearing two sterically demanding conformationally flexible cycloheptyl rings adjacent to the hydroxy groups. The molecule shows approximate non-crystallographic C_2 symmetry. Bond lengths and angles are normal. In the crystal structure, infinite chains are formed by alternating intra- and intermolecular hydrogen bonds between the hydroxy groups.

Related literature

For the synthesis of the title compound, see: Corey *et al.* (1976).

Experimental

Crystal data

$C_{14}H_{26}O_2$
$M_r = 226.35$
Orthorhombic, Pbca
a = 9.8750 (10) Å

<i>b</i> = 12.3662 (12) Å
c = 21.7093 (19) Å
$V = 2651.1 (4) \text{ Å}^3$
Z = 8

```
Mo K\alpha radiation
\mu = 0.07 \text{ mm}^{-1}
```

Data collection

Nonius KappaCCD diffractometer Absorption correction: analytical (de Meulenaer & Tompa, 1965) $T_{min} = 0.980, T_{max} = 0.987$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.052 & \text{Only H-atom displacement} \\ wR(F^2) &= 0.127 & \text{parameters refined} \\ S &= 1.16 & \Delta\rho_{\text{max}} &= 0.21 \text{ e} \text{ Å}^{-3} \\ 2619 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.17 \text{ e} \text{ Å}^{-3} \\ 148 \text{ parameters} \end{split}$$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1 - H801 \cdots O2^i$	0.84	1.96	2.7889 (15)	168
O2−H802···O1	0.84	2.11	2.5856 (15)	116

T = 200 (2) K

 $R_{\rm int} = 0.051$

 $0.41 \times 0.35 \times 0.22 \text{ mm}$

12976 measured reflections 2619 independent reflections

2208 reflections with $I > 2\sigma(I)$

Symmetry code: (i) $x - \frac{1}{2}, y, -z + \frac{1}{2}$.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2005); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2005); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996); software used to prepare material for publication: *SHELXL97*.

The authors thank Sandra Albrecht for professional support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2371).

References

Göttingen, Germany.

- Burnett, M. N. & Johnson, C. K. (1996). *ORTEPIII*. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Corey, E. J., Danheiser, R. L. & Chandrasekaran, S. (1976). J. Org. Chem. 41, 260–265.
- Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
- Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Version 1.171.27p5 beta. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

supplementary materials

Acta Cryst. (2007). E63, o4752 [doi:10.1107/S1600536807058345]

Bi-1,1'-cycloheptane-1,1'-diol

R. Betz and P. Klüfers

Comment

Bis-1,1'-cycloheptyl-1,1'-diol was prepared as a chelating molecule bearing the sterically demanding but conformationally flexible cycloheptyl groups. In the molecule two cycloheptyl groups are connected by a single bond. The two C atoms participating in the connection are further substituted with a hydroxy group each thus comprising a vicinal diol. Both cycloheptane rings adopt a chair-like conformation (Fig. 1). Bond lengths and angles are normal.

In the crystal packing (Fig. 2), one-dimensional chains of hydrogen-bonded molecules (Fig. 3) are the dominant structural motif.

Experimental

The title compound was prepared in adoption of a published procedure (Corey *et al.*, 1976) upon pinacolic coupling of cycloheptanone.

Crystals suitable for X-ray analysis were obtained after recrystallization from boiling diethylether/*n*-pentane.

Refinement

All H atoms were located in a difference map and refined as riding on their parent atoms. One common isotropic displacement parameter for all H atoms was refined.

Figures

Bi-1,1'-cycloheptane-1,1'-diol

Crystal data

$C_{14}H_{26}O_2$	$F_{000} = 1008$
$M_r = 226.35$	$D_{\rm x} = 1.134 {\rm ~Mg~m^{-3}}$
Orthorhombic, Pbca	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	$\theta = 3.9 - 26.0^{\circ}$
a = 9.8750 (10) Å	$\mu = 0.07 \text{ mm}^{-1}$
b = 12.3662 (12) Å	T = 200 (2) K
c = 21.7093 (19) Å	Block, colourless
$V = 2651.1 (4) \text{ Å}^3$	$0.41 \times 0.35 \times 0.22 \text{ mm}$
Z = 8	

Data collection

Nonius KappaCCD diffractometer	2619 independent reflections
Radiation source: fine-focus sealed tube	2208 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.051$
T = 200(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
ω–scans	$\theta_{\min} = 4.3^{\circ}$
Absorption correction: analytical (de Meulenaer & Tompa, 1965)	$h = -11 \rightarrow 12$
$T_{\min} = 0.980, \ T_{\max} = 0.987$	$k = -13 \rightarrow 15$
12976 measured reflections	$l = -26 \rightarrow 26$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.052$	Only H-atom displacement parameters refined
$wR(F^2) = 0.127$	$w = 1/[\sigma^2(F_o^2) + (0.0541P)^2 + 0.4645P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.16	$(\Delta/\sigma)_{\rm max} < 0.001$
2619 reflections	$\Delta \rho_{max} = 0.21 \text{ e} \text{ Å}^{-3}$
148 parameters	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	-0.05372 (10)	0.31065 (9)	0.21196 (5)	0.0340 (3)
H801	-0.1253	0.3298	0.2298	0.0460 (10)*

O2	0.20358 (10)	0.34212 (10)	0.22483 (5)	0.0351 (3)
H802	0.1460	0.3084	0.2459	0.0460 (10)*
C1	-0.00279 (14)	0.39937 (11)	0.17517 (7)	0.0241 (3)
C14	-0.01382 (16)	0.50382 (12)	0.21354 (7)	0.0315 (4)
H141	-0.0933	0.4965	0.2410	0.0460 (10)*
H142	0.0673	0.5083	0.2402	0.0460 (10)*
C13	-0.02705 (18)	0.61143 (13)	0.17922 (9)	0.0401 (4)
H131	0.0110	0.6697	0.2053	0.0460 (10)*
H132	0.0276	0.6079	0.1411	0.0460 (10)*
C12	-0.17232 (19)	0.64067 (14)	0.16229 (10)	0.0471 (5)
H121	-0.2296	0.6327	0.1994	0.0460 (10)*
H122	-0.1749	0.7177	0.1500	0.0460 (10)*
C11	-0.23341 (19)	0.57329 (15)	0.11070 (9)	0.0458 (5)
H111	-0.1862	0.5917	0.0719	0.0460 (10)*
H112	-0.3295	0.5944	0.1058	0.0460 (10)*
C10	-0.22698 (16)	0.45112 (14)	0.11944 (8)	0.0373 (4)
H101	-0.2846	0.4163	0.0879	0.0460 (10)*
H102	-0.2651	0.4329	0.1603	0.0460 (10)*
С9	-0.08306 (15)	0.40386 (13)	0.11493 (7)	0.0301 (4)
H91	-0.0897	0.3296	0.0982	0.0460 (10)*
H92	-0.0310	0.4475	0.0849	0.0460 (10)*
C2	0.14850 (14)	0.36422 (12)	0.16421 (7)	0.0254 (3)
C3	0.23549 (15)	0.45530 (13)	0.13821 (7)	0.0302 (4)
H31	0.2413	0.5133	0.1695	0.0460 (10)*
H32	0.1887	0.4858	0.1018	0.0460 (10)*
C4	0.37994 (16)	0.42418 (15)	0.11911 (8)	0.0394 (4)
H41	0.4402	0.4872	0.1255	0.0460 (10)*
H42	0.4122	0.3652	0.1462	0.0460 (10)*
C5	0.39112 (18)	0.38754 (17)	0.05225 (8)	0.0470 (5)
H51	0.3473	0.4426	0.0258	0.0460 (10)*
H52	0.4882	0.3851	0.0409	0.0460 (10)*
C6	0.32847 (18)	0.27796 (16)	0.03777 (8)	0.0466 (5)
H61	0.3829	0.2213	0.0584	0.0460 (10)*
H62	0.3350	0.2655	-0.0072	0.0460 (10)*
C7	0.18045 (18)	0.26413 (15)	0.05714 (8)	0.0422 (4)
H71	0.1445	0.1972	0.0382	0.0460 (10)*
H72	0.1273	0.3257	0.0408	0.0460 (10)*
C8	0.15943 (17)	0.25790 (12)	0.12723 (8)	0.0342 (4)
H81	0.2355	0.2157	0.1447	0.0460 (10)*
H82	0.0758	0.2159	0.1348	0.0460 (10)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0257 (6)	0.0342 (6)	0.0421 (7)	0.0008 (4)	0.0071 (5)	0.0105 (5)
O2	0.0247 (6)	0.0522 (7)	0.0285 (6)	-0.0008 (5)	-0.0035 (5)	0.0092 (5)
C1	0.0226 (7)	0.0252 (7)	0.0245 (7)	-0.0016 (6)	0.0009 (6)	0.0027 (6)
C14	0.0293 (8)	0.0370 (9)	0.0283 (8)	0.0006 (7)	0.0029 (6)	-0.0067 (7)

supplementary materials

C13	0.0451 (10)	0.0283 (9)	0.0470 (10)	-0.0026 (7)	0.0071 (8)	-0.0079 (7)
C12	0.0503 (11)	0.0298 (9)	0.0611 (12)	0.0112 (8)	0.0109 (10)	0.0040 (8)
C11	0.0373 (10)	0.0494 (11)	0.0507 (11)	0.0142 (8)	-0.0017 (8)	0.0132 (9)
C10	0.0271 (9)	0.0443 (10)	0.0406 (9)	0.0032 (7)	-0.0076 (7)	0.0001 (8)
C9	0.0263 (8)	0.0342 (8)	0.0297 (8)	0.0016 (6)	-0.0048 (6)	-0.0039 (6)
C2	0.0229 (7)	0.0300 (8)	0.0233 (7)	0.0013 (6)	-0.0022 (6)	0.0017 (6)
C3	0.0247 (8)	0.0352 (9)	0.0308 (8)	-0.0045 (6)	0.0011 (6)	-0.0005 (7)
C4	0.0247 (8)	0.0541 (11)	0.0395 (10)	-0.0028 (7)	0.0041 (7)	0.0007 (8)
C5	0.0313 (9)	0.0723 (13)	0.0372 (10)	0.0043 (9)	0.0090 (8)	0.0032 (9)
C6	0.0440 (10)	0.0637 (12)	0.0321 (9)	0.0191 (9)	0.0039 (8)	-0.0071 (8)
C7	0.0415 (10)	0.0457 (10)	0.0395 (10)	0.0072 (8)	-0.0042 (8)	-0.0147 (8)
C8	0.0300 (8)	0.0293 (8)	0.0432 (10)	0.0036 (6)	0.0013 (7)	-0.0005 (7)

Geometric parameters (Å, °)

O1—C1	1.4472 (17)	С9—Н91	0.9900
O1—H801	0.8400	С9—Н92	0.9900
O2—C2	1.4501 (17)	C2—C3	1.525 (2)
O2—H802	0.8400	C2—C8	1.544 (2)
C1—C9	1.530 (2)	C3—C4	1.534 (2)
C1—C14	1.541 (2)	С3—Н31	0.9900
C1—C2	1.574 (2)	С3—Н32	0.9900
C14—C13	1.531 (2)	C4—C5	1.525 (2)
C14—H141	0.9900	C4—H41	0.9900
C14—H142	0.9900	C4—H42	0.9900
C13—C12	1.524 (3)	C5—C6	1.522 (3)
C13—H131	0.9900	С5—Н51	0.9900
С13—Н132	0.9900	С5—Н52	0.9900
C12—C11	1.521 (3)	C6—C7	1.531 (3)
C12—H121	0.9900	С6—Н61	0.9900
C12—H122	0.9900	С6—Н62	0.9900
C11—C10	1.524 (3)	С7—С8	1.538 (2)
C11—H111	0.9900	С7—Н71	0.9900
C11—H112	0.9900	С7—Н72	0.9900
С10—С9	1.540 (2)	C8—H81	0.9900
C10—H101	0.9900	С8—Н82	0.9900
C10—H102	0.9900		
C1—O1—H801	109.5	H91—C9—H92	107.4
С2—О2—Н802	109.5	O2—C2—C3	105.30 (11)
O1—C1—C9	108.61 (12)	O2—C2—C8	106.56 (12)
O1—C1—C14	108.21 (12)	C3—C2—C8	113.40 (12)
C9—C1—C14	113.26 (12)	O2—C2—C1	105.72 (11)
O1—C1—C2	101.77 (11)	C3—C2—C1	112.75 (12)
C9—C1—C2	111.87 (12)	C8—C2—C1	112.34 (12)
C14—C1—C2	112.35 (12)	C2—C3—C4	116.00 (13)
C13—C14—C1	118.14 (13)	С2—С3—Н31	108.3
C13—C14—H141	107.8	C4—C3—H31	108.3
C1—C14—H141	107.8	С2—С3—Н32	108.3
C13—C14—H142	107.8	C4—C3—H32	108.3

C1—C14—H142	107.8	H31—C3—H32	107.4
H141—C14—H142	107.1	C5—C4—C3	113.52 (14)
C12—C13—C14	113.82 (14)	C5—C4—H41	108.9
C12-C13-H131	108.8	C3—C4—H41	108.9
C14—C13—H131	108.8	C5—C4—H42	108.9
C12—C13—H132	108.8	C3—C4—H42	108.9
C14—C13—H132	108.8	H41—C4—H42	107.7
H131—C13—H132	107.7	C6—C5—C4	115.57 (15)
C11—C12—C13	114.89 (14)	C6—C5—H51	108.4
C11—C12—H121	108.5	C4—C5—H51	108.4
C13—C12—H121	108.5	C6—C5—H52	108.4
C11—C12—H122	108.5	C4—C5—H52	108.4
C13—C12—H122	108.5	H51—C5—H52	107.4
H121—C12—H122	107.5	C5—C6—C7	115.52 (15)
C12-C11-C10	115.78 (15)	С5—С6—Н61	108.4
C12—C11—H111	108.3	С7—С6—Н61	108.4
C10-C11-H111	108.3	С5—С6—Н62	108.4
C12—C11—H112	108.3	С7—С6—Н62	108.4
C10-C11-H112	108.3	H61—C6—H62	107.5
H111—C11—H112	107.4	C6—C7—C8	113.98 (14)
С11—С10—С9	114.00 (14)	С6—С7—Н71	108.8
C11-C10-H101	108.8	C8—C7—H71	108.8
С9—С10—Н101	108.8	С6—С7—Н72	108.8
C11—C10—H102	108.8	С8—С7—Н72	108.8
С9—С10—Н102	108.8	H71—C7—H72	107.7
H101—C10—H102	107.6	C7—C8—C2	118.76 (13)
C1—C9—C10	115.95 (13)	C7—C8—H81	107.6
С1—С9—Н91	108.3	С2—С8—Н81	107.6
С10—С9—Н91	108.3	С7—С8—Н82	107.6
С1—С9—Н92	108.3	С2—С8—Н82	107.6
С10—С9—Н92	108.3	H81—C8—H82	107.1
O1-C1-C14-C13	-153.65 (13)	C14—C1—C2—C3	-51.89 (16)
C9—C1—C14—C13	-33.17 (19)	O1—C1—C2—C8	62.95 (14)
C2-C1-C14-C13	94.79 (16)	C9—C1—C2—C8	-52.83 (16)
C1-C14-C13-C12	86.06 (18)	C14—C1—C2—C8	178.48 (12)
C14—C13—C12—C11	-72.2 (2)	O2—C2—C3—C4	72.10 (16)
C13-C12-C11-C10	53.4 (2)	C8—C2—C3—C4	-44.03 (18)
C12-C11-C10-C9	-69.5 (2)	C1—C2—C3—C4	-173.12 (13)
O1—C1—C9—C10	75.89 (16)	C2—C3—C4—C5	89.91 (18)
C14—C1—C9—C10	-44.36 (18)	C3—C4—C5—C6	-70.9 (2)
C2-C1-C9-C10	-172.58 (13)	C4—C5—C6—C7	53.6 (2)
C11—C10—C9—C1	89.02 (18)	C5—C6—C7—C8	-70.2 (2)
O1—C1—C2—O2	-52.88 (13)	C6—C7—C8—C2	84.19 (19)
C9—C1—C2—O2	-168.66 (11)	O2—C2—C8—C7	-148.94 (14)
C14—C1—C2—O2	62.64 (15)	C3—C2—C8—C7	-33.56 (19)
O1—C1—C2—C3	-167.42 (12)	C1—C2—C8—C7	95.73 (16)
C9—C1—C2—C3	76.80 (15)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
O1—H801···O2 ⁱ	0.84	1.96	2.7889 (15)	168
O2—H802…O1	0.84	2.11	2.5856 (15)	116
Symmetry codes: (i) $x-1/2$, y , $-z+1/2$.				

Fig. 2

